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Low Reynolds number heat transfer from a 
circular cylinder 
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(Received 4 April 1967 and in revised form 15 November 1967) 

Theoretical results are obtained for forced heat convection from a circular 
cylinder at  low Reynolds numbers. Consideration is given to the cases of a moder- 
ate and a large Prandtl number, the analysis in each case being based upon the 
method of matched asymptotic expansions. Comparison between the moderate 
Prandtl number theory and known experimental results indicates excellent 
agreement; no relevant experimental work has been found for comparison with 
the large Prandtl number theory. 

Introduction 
In  the area of hot-wire anemometry, one encounters the phenomenon of 

forced convection from a heated circular cylinder at  extremely low Reynolds 
numbers (R). Several theoretical analyses have treated this problem; however, 
none has made full use of the known velocity field, as R$O, which was determined 
for this geometry by Kaplun (1957) and by Proudman & Pearson (1957). 

In the present paper, use is made of the above velocity solution in order to 
solve the energy equation. The cases of a moderate and large Prandtl number (a)  
are analysed. (The large a analysis is subject to the constraint aR < 1; such con- 
ditions can be expected to obtain in the application of hot-wire anemometry to 
low velocity flows such as natural convection base flow in liquids.) Natural 
convection and viscous dissipation are neglected and it is assumed that the fluid 
is of constant density and uniform transport properties. The method of matched 
asymptotic expansions is employed. 

Cole & Roshko (1954) first considered this problem, applying Oseen's approxi- 
mation to the energy equation (i.e. the velocity field was approximated by a 
uniform stream) and obtaining a solution for the temperature field in terms of an 
infinite series of modified Bessel and trigonometric functions, the coefficients 
being determined from the isothermal surface boundary condition. Based on this 
solution, Cole & Roshko computed the total heat transfer by considering the 
forced convection through a cylindrical surface (concentric to the body) of 
arbitrarily large radius. Expanding the resulting expression for small Peclet 
numbers (P, the product of R and a),  they obtained 
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(where N is the Nusselt number, the diameter, D ,  is the characteristic length and 
In y is Euler's constant = 0.577.. .). Illingworth (1963) employed the same tech- 
nique as Cole & Roshko and obtained the next order term in this expansion: 

Wood (1968) also treated this problem by employing Oseen's approximation; 
however, he first applied this approximation to the momentum equations, 
obtaining higher-order terms in the velocity field. His analysis of the thermal 
field therefore accounts for the thermal convection caused by these latter velocity 
components; following a lengthy and complicated analysis, he obtained the 
result : 

4410(*P) 

where I,, K ,  are modified Bessel functions of the second kind and h(cr), p ( a )  are 
constants (for a given a) which must be obtained numerically. In  particular, 
Wood found that h(0-72) = 1.38, ~ ( 0 . 7 2 )  = 0.40. 

The present paper treats the circular cylinder via the method of matched 
asymptotic expansions and considers the two limiting cases: (i) a fixed, 2240; 
(ii) B = (&R)-"(O < a < l ) ,  RJO. For case (i), the leading term of the current 
expansion is identical to the result of Cole & Roshko, whereas the second term 
agrees closely with the second term in Wood's expansion. To the authors' know- 
ledge, there is no existing theory for the large Prandtl number case treated in (ii). 

Analysis 
(i) RJO, crJixed 

The temperature field is assumed to have the following asymptotic expansions : 

T(r*, 8;  R; a) - x S,(R)T,(r, 8 ;  g )  RJO, r fixed, (4) 

T(r*, 8; R; a) N x A,(R)Y,(p, 8;  B)  RJO, p fixed, ( 5 )  

where T = (t-t,)/(tw-tm) (t  being the temperature, subscripts w and co indi- 
cating conditions at the wall and at  infinity, respectively), r* is the radial co- 
ordinate in physical space, 8 is the angular co-ordinate measured from the down- 
stream direction and r and p are the radial co-ordinates non-dimensionalized 
respectively with respect to the diameter of the body, D, and the viscous length, 
v/U, (Y being the kinematic viscosity and U, the speed of the uniform stream). 
The 'Stokes' expansion, (4)) is valid near the body and the 'Oseen' expansion, 
( 5 ) ,  is applicable at  large distances from the body. As a result, the surface condi- 
tion T($D, 8; R; a) = 1 is imposed upon (4) and the uniform temperature con- 
dition at infinity is placed upon (5). Additional conditions on each of the expan- 
sions result from matching considerations [cf. Van Dyke (1964) or Kaplun & 
Lagerstrom (1957)l. 
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For the circular cylinder, substitution of the Stokes and Oseen variables into 
the energy equation results in, respectively, 

where v, and v, are the velocity components, normalized by U,. Kaplun (1957) 
and Proudman & Pearson (1957) determined these velocity components in the 
limit R$O. In  the Stokes region, the velocity is O(l/lnR) whereas, in the Oseen 
region, the flow is that of a uniform stream perturbed by terms of O(l/lnR). 

Based upon this velocity field, one sees that the leading term of the Oseen 
temperature expansion arises from a balance of thermal diffusion and convection 
by the uniform stream, the appropriate solution being 

To = exp (Q~pcos0)K0(&p). (8) 

Since (8) has a logarithmic singularity for small p (the matching region) and, due 
to the wall condition, the Stokes temperature expansion must be finite but non- 
zero, it  follows that 

Ao(R) = O(l/lnR) (2240). 

As a result, the forced convection of % by the Oseen velocity components of 
O( l/lnR) results in an effect of O( l/ln2R), implying that A,@) is of the same order. 
By induction, 

A,(R) = O(l/lnR)"+l (R$O). 

In  the Stokes region, it is seen from (6) that thermal diffusion predominates. 
Making use of the isothermal wall condition, it follows that (4) must be of the 
form 

T N 1 +f(R)ln2r, r fixed (R$O), (9) 

where, from matching considerations, 

f (R) = O( 1/1n R) (R$O). 

The leading convective effect in the Stokes region is therefore of O(Rln-2R), 
implying expansion (9) is applicable to the same order. Interestingly, although 
(9) is based upon pure conduction in the Stokes region, it is still dependent 
upon the thermal convection, as is evidenced byf(R); this arises from matching 
considerations and indicates that the temperature field in the Stokes region is 
'induced' by the velocity field in the Oseen region. In  particular, for the case of 
no forced convection (R = 0) ,  (9) reduces to a uniform temperature, indicating 
the well-known result that there does not exist a non-trivial solution for steady- 
state pure conduction from a heated circular cylinder in an unbounded medium. 
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Based upon the above considerations, a detailed analysis results in the follow- 
ing expansions ; 

T N ATo + A2& + A3[ - u3(cr)& + F3@, S)] + O( l/ln4 R) 
(cr and p fixed, Rho), (10) 

ln2r (cr and r fixed, RJO), (11) 

where A = (In 8/ycrR)-l, To is as given in (8), Fl N a3(cr) + 0 (pln2p), F3 N O( l), 
P4.O P + O  

and a,(cr) is a constant (for a given cr) which must be determined numerically (cf. 
appendix). Only a3(cr) has been determined, the following values having been 

computed ~ ~ ~ ( 0 . 7 2 )  M 1.38, a3(l.0) z 1-63, ~ ~ ( 6 . 8 2 )  M 3.42. 

It should be indicated that the structure of expansions (10) and (1 1) is the same 
as the corresponding velocity expansions obtained by Kaplun (1957). Based upon 
(1 1)) the heat transfer is 

a3(cr) ] + O[(ln R)-4] (cr fixed, RJO). 
N---[l- 2 

(12) In 8/ycrR (In 8 / ~ c r . R ) ~  

(ii) cr = ($R)-a (0 < a < l), R$O 

With cr = ($R)-", it is seen from the energy equation that the thermal convection 
and diffusion are comparable, as RJO, if (r*/D)R1-" is held fixed. Therefore, 
j3 E 2aR1-ar = 2aR-"p forms the ' Oseen' variable for the thermal field. Since, in 
the limit RJO, p̂  fixed, the momentum equation reduces to the Stokes equation, it 
follows that the velocity in the Oseen thermal region is based upon the Stokes 
stream function. This fact simplifies the analysis, enabling one to obtain a closed- 
form asymptotic solution. 

Making the substitution r = 2-"Ra-lp  ̂into the Stokes stream function, one 
finds that, in the Oseen thermal region, the leading term of the velocity field is a 
uniform stream of magnitude Urn( 1 - a). Hence, the ' effective ' Reynolds number is 
(1 - a)R. [In the Oseen velocity region, thermal convection now predominates; 
since the leading term of the velocity field is a uniform stream, the temperature 
in this region is, to the order of the present analysis, uniform (i.e. T,).] 

Using the same expansions for the temperature as in (4) and (5) [with p^, 
Fn replacing p, Tm in ( 5 ) ]  and basing the velocity in both thermal regions upon 
the Stokes stream function, the resulting analysis parallels that of case (i). The 
results are: 

A 

T $.", + & + $ 3 ~  - b3(a)g0 + G ~ ( P ,  el] + 0(1/in4 R)  

(p^ fixed, cr = (&R)-a, RJO), (13) 

(14) 
m 

In 2r (Y fixed, cr = (&R)-a, R$O), 



Heat transfer from a circular cylinder 25 
A 

where To = exp(@pcosB)K,(~bp), b = (1 -a ) ,  

b3(a) = 2[{(1- 2a) In 2 + (4-ln y )  (1 -a) +In (1 - a)}/31+/32], 

Discussion 
Comparison of the present result for the moderate cr case, (12), with that of 

Cole & Roshko, (l), indicates that the first term in the former is identical to the 
latter result. However, the second term in (12) does not agree with the result of 
Illingworth, (2). This disagreement is due to the fact that Illingworth did not 
consider the effect of higher-order components of the velocity field upon the 
temperature distribution (i.e. he tacitly assumed the Oseen approximation to 
be valid to all orders of R). In  particular, Che second term in the current result, 
( le) ,  follows directly from considering the convection of To by the velocity 
components of O[(ln R)-l] in the Oseen region. 

The result of Wood, (3), is in an unnecessarily complicated form. By expanding 
the Bessel functions about R = 0, (3) reduces to 

as RJO, the analysis of Wood being valid to O[(ln R)-4].  As expected, the leading 
term in (16) is identical to the result of Cole & Roshko. Comparison of the present 
moderate Prandtl number result, (12), with the first two terms in (16), indicates 
very close agreement, the only difference being that the second term in (16) 
contains the factor (ln 8/yR)-I rather than (In 8/7~P)-~. This difference is actually 
of O( l/ln4 R)  and therefore does not constitute a disagreement between the 
theories, (12) being valid to only O( l/ln3R). It is noteworthy that, by using the 
method of matched asymptotic expansions in the present work, the labour 
required in obtaining the higher-order term was greatly reduced. Specifically, 
in the present analysis it was only necessary to obtain the explicit behaviour of 
TI as pJ0 (i.e. in the matching region). However, the very fact that TI was not 
determined explicitly throughout the Oseen region meant that, in the present 
paper, the temperature expansion could not be extended beyond this term. This 
shortcoming is of little practical significance since, based upon ( l6) ,  the term of 
O( l/ln4 R) contributes less than 3 yo of the total heat transfer for R < 0.40. 

A comparison of the above theories (for cr = 0-72) with the empirical correla- 
tion obtained by Collis & Williams (1959) is shown in figure 1. The experimental 
results were obtained from heated wires in air under conditions for which the 
natural convection was negligible. It is seen from the graph that the present 
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FIGURE 1. Forced heat convection from a circular cylinder in air (cr = 0.72). -, present 
theory, equation (12) ; - - -. -, Cole & Roshko, equation (1)  ; . . . . ., Illingworth, equation 
(2); -.-, Collis & Williams, experimental correlation; - - - -, Wood, equation (16). 
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Forced heat convection from a circular cylinder in water (a = 2). --, 
present high u theory, equation (15); - - -, present moderate a theory, equation (12); 
. . . ., Piret et al. experimental correlation. 

result, (li?), is almost coincident with that of Wood, (16); in the range R < 0.40, 
these two theories agree to within 1 %. Comparison with the experimental curve 
indicates that the theories of Wood and the present paper are in closest agree- 
ment with the correlation of Collis & Williams. In  the range R = 0.02 (lower limit 
of experiment) to R = 0.40, the deviation between the current result, (12), and 
the experimental correlation is less than 3 yo. 

In  figure 2, the high Prandtl number result, (la), is shown for the case r = 6-82 
(corresponding to water). For comparison, the moderate Prandtl number theory, 
(12), is also plotted. The only relevant data that has been found for this case is 
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that obtained by Piret, James & Stacy (1947); their experiment involved the 
use of in. diameter wires in water. However, their results are limited to 
R > 0-08 and correspond to temperature differences (tw - t,) of 50-130 O F ,  making 
comparison with a uniform a theory suspect. Nevertheless, it is evident from 
figure 2 that the applicability of the currenh large a theory is less restricted (in R) 
than the moderate a result, the former appearing to be valid up to about R = 0.04. 
Complete verification of the theory is evidently precluded by the absence of data 
in this low R r6gime. 

The authors acknowledge the support of the National Science Foundation 
through grants GP 127 and GK 1963. 

Appendix. Determination of a3 (a) 

Letting Tl = exp ( i ap  cos 0)F(p,  O ) ,  the equation for TI becomes 

(0; - ia2)F = f (p,  8;  a), 
where 

f(p, 8;  a) = (02 /p)  [ - K,(&vp) + cos OK,(&p)] + ga2exp ($p cos 0) [K,(&p) 
x K , ( $ C ~ )  - cos OK1($p)Ko($ap) + cosBK,($p)K,(&p) - K0(&)KO(Q~p)] .  

The appropriate Green’s function is 

G ( p , p ’ )  = -- K,($~lp-jS‘() ,  ( 3 
where p signifies the (vector) displacement of a given point (p, 0) from the origin. 

+ + exp (gp’ cos 0){ - Kl(~p’)Kl($ap’)Ko($ap’) + cos O‘Kl($p’)K;(&ap’) 

- cos O’K,(~p’)K,(&ap’)K,( gap’) + K,($p/)K;(*ap’)} p’d0’dp’. 1 
That is, 

+P’~l(+p’)Kl($P’)K$($ap’) - p ’ ~ l ( ~ ~ ’ ) ~ o ( ~ ~ ’ ) ~ l ( i a p ’ ) ~ O ( i ~ ~ ~ )  

+ P’-r,(~~’)~O(~~’)~$(&~~’)l dP’. (17) 

This latter integral must be evaluated numerically. It should be noted that this 
procedure for determining a3(v) is completely analogous to that employed by 
Kaplun (1957) in determining the corresponding velocity field. Comparing (17) 
with the corresponding integral obtained by Wood (1968), it is found that the two 
are identical since three of the terms in (17) cancel: 

2 - xr,(gx)K,(gx) -xll($x)K,(gx) = 0. 
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